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Abstract

“In this paper we analyze a fault-tolerant computer system. The failure/repair behavior of the sys-
tem is modelled by an irreducible continuous-time Markov chain. Jobs arrive in a Poisson fashion to the
system and are serviced according to an F'CFS disciphine. A failure may cause the loss of the work
already done on the job in service, if any; in this case the interrupted job is repeated as soon as the sys-

.

tem is ready to deliver service. In addition to the delays due to failures and repairy, jobs suller delays due

to queueing. We present a general queueing analysis of fault-tolerant systems and study the steady-state

behavior of the number of jobs in the system. As a numerical example, we consider a system with two

processors subject to failures and repairs.
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1. Introduction

Queueing models provide a useful tool for predicting the performance of many service systems
including computer systems, telecommunication systems, computer/communication networks and flexible
manufacturing systems. Traditional queueing models predict system performance under the assumption
that all service facilities provide failure-free service {7]. It must, however, be acknowledged that service
facilities do experience failures and that they get repaired. Failure/repair behavior of such systems is
commonly modelled separately using techniques classified under reliability /availability modeling [3]. In
recent years, it has been increasingly recognized that this separation of performance and

reliability /availability models is no longer adequate [13].

Two distinct approaches towards combined modeling of performance and reliability /availability
have been used. In the first approach, queueing models with server breakdowns and repairs are analyzed
by means of generating functions [14], supplementary variables [2], imbedded Markov process and renewal
theory 6], or probabilistic [17] techniques. These eflorts generally carry out an exact steady-state queue-
ing analysis of the system in the presence of breakdowns and repairs. A transient analysis of an M/G/1
queue with server breakdown, subject to hard-deadline constraint on response time, has been considered
recently {1]. The second approach is approximate, in which it is assumed that the time to reach the
steady-state is much smaller than the times to failures/repairs. Therefore, it is reasonable to associate a
performance measure (reward) with each state of the underlying Markov (or semi-Markov) model describ-
ing the failure/repair behavior of the system. Each of these performance measures is obtained from the
steady-state queueing analysis of the system in the corresponding state. The resulting reward model is
then analyzed for the expected values or the distributions of interesting cumulative measures of system

performance {8,9,10,i3].

Since the job oriented view of performance,/reliability in fault-tolerant system is particularly impor-

tant., models have been developed to derive the distribution of job completion time in a failure-pron:

o : : :
:\'_-.' environment. In these models, we need to consider a possible loss of work due to the occurrence of a
_\:;\.'
- . . . . . .
‘_ oy failure, i.e., the interrupted job may be resumed or restarted upon service resumption. We have recently
g
oo,
- . . . . . . . .
.‘i considered models that take into account different types of interruptions in the analysis of the job comple-
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tion time (8,9,10]. These earlier results are the bases for the queueing analysis presented in this paper.
Note that the job completion time analysis includes the delays due to failures and repairs, but it does not
account for queueing delays. The purpose of this paper is to extend our earlier analysis so as to account
for the queueing delays. In effect, we consider an exact queueing analysis of the system in order to obtain

the steady-state distribution and the mean of the number of jobs in the system.

We consider a queueing model of a computer system where the jobs arrive in a Poisson fashion with
rate A. The service requirements of the incoming jobs form a sequence of independent and identically dis-
tributed random variables with common c¢df G (.). The computer system exists in one of n possible
states. The state of the computer system changes with time according to an independent continuous-time
Markov chain. It is assumed that this chain is irreducible. When the computer system is in state i it
delivers service at rate r; > 0. A state i may be classified as preemptive-resume (prs ) or preemptive-
repeat-identical (pri) as follows: A state is said tc be prs (pri) if, upon entering that state, the work
done so far on the current job is preserved (lost), and the service is resumed (restarted) in the new state.
Thus the actual time required to complete a job depends in a complex way upon the service requirement
of the job and the evolution of the state of the computer system. It is assumed that there is an infinite

waiting room for the jobs and that the service discipline is first come first served (FCFS). Note that

even though the service requirements of jobs are independent and identically distributed, the actual times
required to complete these jobs are neither independent nor identically distributed, and hence the model

cannot be reduced to a standard M/G/1 queue [17].

When all the states of the model describing the computer system are prs, i.e., no work is ever lost,
the problem described here can be analyzed as queues in random environments (e.g., see Purdue 18} In
the present paper we carry the analysis with the possibility of work loss, i.e., when some of the states of
the underlying Markov model are prs and the remaining pri. As loss of work due to failures and interr-
uptions is quite a common phenomenon in fault-tolerant computer systems, the model proposed here 1s of
obvious interest. Many of the breakdown-repair queueing models studied in the literature are special cases

of the model studied here (e.g., Mitrani [14], Nicola [17], Baccelli and Trivedi [2] and others).
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In the next section we first study the situation with no queueing and state some results, concerning
the analysis of job completion time, which are direct extension of those given in {9]. Using these results
we set up the queueing model in Section 3 and show that it has the block M,G/1 structure. Queueing
models with such a structure have been studied by Neuts {15}, Neuts and Lucantoni {16}, Ramaswami {19}
and others. We demonstrate the usefulness of our approach by performing the numerical analysis for a

particular example. This is done in Section 4. Finally, conclusions and some extensions are discussed in

Section 5.

2 The Completion Time Analysis of a Single Job

Consider a single job with service requirement B that starts getting served at time 0. B is a ran-
dom variable with a distribution function G(z) = P(B < z) and LST G (). Let Z(t) be the

state of the computer system at time ¢. It is assumed that {Z(¢),t > O} is an irreducible continuous-

e

e time Markov chain on {1,2,...,n } with n X n generator matrix @ =[g,; |, where ¢,; . (1 7 ) is the tran-
c('\

ot sition rate from state i to state j,and ¢; = -3, gij - Thus, each row of @ sums to zero. Let T be
- Fi

the time when this job completes its service. Define, for1 < 1,37 < n,
F(tr)= P(T <t.Z(T)=j|Z(0)=i.B=1),

>

Fij(s,x)=E(e’T,Z(T)=j | Z(0)=i B=z) = [e™dF; (t 1) ,
0

e F,-; (s,z)dz.

!
,0?.
=
|

Theorems 2.1 and 2.2 below are minor extensions of theorems 2 and 3 in {8'. They treat the cases where

all the states are prs or all the states are pri, respectively. The proofs are similar to those in 8. and

hence, are omitted,

T Theorem 2.1. Let all the states be of the prs type. The double transforms F,; (sw)l1<iy <n.

.
1

are given by the unique solution to

a_ A
et
R

T4

s

P
£ - .
e

FAR _‘.‘_ - _.. o - AR e R e P RPN L. ] R . S . - e .

:

APPSR W T Y A . i O W WAL PP WA Wi i WAL i i W P R GO i VAP SR AR S0 R N R JEPARP S W LR NP U




Y T T TR T TRy wTTwYTYTTTTTT T T ARy T e T ST e,

i et Al Aeh s Sud Al i o028 A JN A4 RAG S - ahic el afabaN LRt e AR RS i I el

4
r, 0 " Yik .
F;, (s.w)= LY -y —F w), 1<, 5 <n
7 ) Srqi -, w =R (se) sy s (2.1)
k=i
where q, = -¢q,;,6;,; =1if i = j and 0 otherwise.

Theorem 2.2, Let all the states be of the pri type. The transforms F,-Jj (s,z), 1 <1,y < n,are

given by the unique solution to

) (e -qlz:r 1 %k ~o+q iz r -
Fij (S WL )=C & Ié"j + E —'——'(1—6 o ')ij (3 > ), 1 <1, ] S n.

= 90
k=1 S‘?‘(]' (-‘-)
k=

Next we consider the mixed case. Let § < {1.2,...,n} be the set of pri states, and

S = {1.2, ...n}-S be the set of prs states. Suppose Z(0) € S and let

U =min{t 20 2(t)c S}.
Define
V. =mn{T, U} .

Fori € S, define
My(tr) = P(V < 0.2(V)=j | Z(0)=i B=1)

with the corresponding LST J\[,jT (s,z), and the double transform

x
M,-; (s.w) = fe"‘” M‘; (s,z)dz.
0

Note that

Mytr)= P(T <t < UZ(T)=j|Z(0)=1.B=z), if j&§

and
: Myt z)y=P(U <t < T Z(U)=j|Z2(0)=i.B=z), il j&S.
20
t':_ The following theorem is an extension of propositions 5.1 and 5.2 in |9]; the proof follows along the same
b
)} 0N lines, and hence is omitted.
.
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Theorem 2.3. Let 5 be the set of pri states and S be the set of prs states Then
(1) The double transforms f\!,jj (s,w)i.j € S, satisly the following equations
. r; 0;; ; o -
M; (sw) = — Y 4 S L \[,U (s.w), 1. €S Yy
$+q;+r;w ke? $+q +r;w et
ki
(ii) The double transforms A{,J (s,w), i €S, j €S, satisfy the following equations
AI,»J-. (s, w) = % + g ‘\{k; (s,w), icS.;C~ ,
w(s+g+riw) red ST trw -
ks
Equations (2.3) and (2.4) have unique solutions.
The following theorem gives a method for determining F;; (s,2),1 <i.j5 < n. which s the

main result of this section. The proof of this theorem, being similar to those of theorems 51 and 52 of

i9], is omitted.
Theorem 2.4. Let the states in S be pri and those in S be prs. Then
(i) The LSTs F,»; (s,z), 1 €S, satisfy the following equations

F,‘j- (s.x)=g;j(s,2)+ 3 hy(s ,I)FU- (s,z2),1€5,1<j <n

= - (2:5)
where
z
A LN D Y e PR bl VA PP FISE SY
ki3 i o
& Gijls 1) =
e Zg 2561; (s +q )Mu (s.z) if =0, i€S1<j<n
-__:-' k=51<= s
and
@
.I~ z
] ~H2+q)z/r, ik (o +q,)h/r, - .
o m(n_e )2 chsT {e ORI A (s.z-h)dh, if £, >0
L hil(s ,1') = qi q
e — M —’*—M,,, (s,z), f r, =0, ilICS
o (s +4:) /gcg(-’ g)
r'_l,
L
2t
=y
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‘ N {n) The L5T s F,; s,r), i €5, are given by

[ Fj(s.z) = P My (s,2) + T My (s 2 (s,2)i€8 1S Sn g
€ =

Tlus. for the mixed case, the job completion time is completely described by the LST's Fy, (s .r).

given by theorem 2.4. These expressions are essential for the queueing analysis in the next section.

3 The Queueing Model

In this section we perform the steady state analysis of the queueing model described in the introduc-
uon. Let W(f) be the number of jobs in the system (including any in service) at time ¢ . Let 7, be the

time when the v-th job is completed. Assume that 75 = O and a new job starts service at time 0.

Let X, = X(r,+) and Z, = Z{7,+) be the number of jobs and the state of the system, respec-
tvely, immediately after the v-th job completion. Due to the Poisson arrivals and the Markov nature of
{Z(t)t > 0}, it is clear that {(X,,Z,),v > 0} is a discrete time Markov chain with state space
{01} X {1.2...,m} where m = |{i:r; > 0}| , m < n. (Note that a job may complete in
state ¢+ only if,r, > 0). In this section we study the limiting distribution of {(X,,Z,),v > 0}. The

relevance of this limiting distribution follows from the fact that jobs arrive singly to the system and

depart singly from the system, and that the arrival process is Poisson. Therefore,

Lim P(X{t)=j)= LimP(X =j)

¢ v — 00
when the limits exist. This is a well known thecrem (see Cooper [5]).

Next we determine the one step transition probability matrix of {(X,,Z,),v > 0}.

o 8.1. The Transition Probability Matriz

b=, -,

h'_"','

:’_ We first pote that a job may start while the system is in any state, but it may complete only if the
r. system s in a state with a positive service rate. From now on, we assume that r; > 0 for | < i < m
F @ 1

- and r, = Oform < 1 < n. Assume that the unconditional LST

g L %0

o Fij(s)= [F (s,2)dG(z)1<i <n, 1<) < m,

L. 0
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7
has been computed using the methods in Section 2. F;(f ] denotes the inverse of F,; (s), ie.,
Fot)=P(T <t Z(T)y=1Z10) =) 1<: <n, 1<y <m
Now et
a; (k)= P(Z(T)= j. number of arrivals during(0,T = k | Z(0) = 1)
> k
= f e')“&}f%— dF, (). k=012 1 <1 <n. 1<) <m
o !
Define the n Xm matrix A “(k) = [aij»(k ) & > 0. Now. let }" be an exponentially distributed ran-

dom variable with parameter X, which is independent of {Z(¢),t > 0}. The following quantity will be

needed in our analysis
d; = P(Z(Y)=j | Z{0)=i)

=X[eMP(Z(t)=5|ZO)=i)dt, 1 <i,j <n

d,»J is the probability that the system is in state j at the time of the next arrival, given that the system
was empty in state ¢. Recognizing the integral as the Laplace transform we get the following formula for

the n X n matrix D ( = 'd;; )
D = NXM-Q !

where () is the generator matrix of {Z(¢),t > O} as defined in section 2. Using above notation we give

the following theorem.

Theorem 3.1

PN, .=k Z,,=] | X, =k Z,=i)

a, (k' k~1), ik >k-1>0

1) -

Ndya, k'), ik >k =0

(=1

0. otherwise 1<t 5 <m

Proof.
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(i) Let & > k-1>0. Then X',,; = X', - | + number of arrivals during (7,,7,.,). The ser-
vice of the (v+1)-th customer starts at time 7, with the system in state i and ends with the system in

state ;. Hence the required conditional probability is a;; (k' ~k +1).

(it) Let k' > k=0. Thus the system is empty when the v—~th job completes and the system is in
state {. There follows an idle pericd Y of exponential duration with parameter X\, during which time the
state of the system changes to { with probability d;;. The service of the (v+1)-th job starts in state [

and X ,,;= number of arrivals during this service time. Hence the required conditional probability is

n 1
given by Y, dya;;(k ), and is denoted by b;; (k' ), 1 < ¢,j < m.
=1

Let F(t)=[Fi;(t)](1=12,..,n; j=1,2,..,m) be a n X m matrix and F(,4)(t) be a
m X m submatrix of it obtained by taking its first m rows. For k > 0, define the n X m matrices
A°(k)and m X m matrices A (k) as follows:

[e o}

. a0 (Nt k
A (k)=£e * Lk_!)—dF(t)
Ak)= IC_M &tkf_dp(rcd)(t)-
V]

Also define m X m matrices B(k), & 2 0, as follows

B(k)::D(red)A‘(k)

where D (,.q)is the m X n submatrix of D = NN/ -Q )"! obtained by deleting its last 7 -m rows.

Define the macro state vector £ ={(¢,1),(¢,2),....(+ ,m )}, 1=0,1,2,.... The macro state § means

that there are ¢ jobs in the system, upon an arbitrary job completion. Using the state space

{t : ¢ > 0}, we can write the one-step transition probability matrix of {(X,,Z ),v > 0}, as

0 1 2 3
o [B(O) B(1) B(2) B(3)
1| A(0) A(1) A(2) A(3
P= 2 A0 AQ A(2
3 A0 A1
4 A0
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Notice that Z, can be in state ¢ if and only if r; > 0. Therefore, A (k) and B(k),k > 0, are all

m X m matrices, and all elements of A (k) and B (k),k > 0, are strictly positive.

From the above matrix representation, it is obvious that our model has a block M/G/1 structure.
As mentioned before, there are a large number of models that fall into this structure and a general algo-
rithm for the solution of this problem has been studied in detail by Lucantoni and Neuts [11], Lucantoni

and Ramaswami [12] and Neuts [15]. Here, we use a modified version of the method of Lucantoni and

Neuts [11].

e -
Nowlet A = 35 A (k)= F(,4)(0). Note that A (=[a;;]) is an irreducible stochastic matrix.
k=0
Let f be its invariant solution, i.e.,

2T =zTA, 27 ¢ =1

where e is an

m -dimensional column

vector of 1s. We define
o0 d _ T

B= Y kA (k)e = [—XI’-F("‘) (s) | s=cle. Note that £ 3 is the expected number of arrivals per
k=1

departure at saturation (i.e., assuming that the system is never empty). Hence the condition of stability

for the queueing system is given by (Neuts [15]):

p=1x78<1,

which can be rewritten as

A<\

where A* is the threshold value of the job arrival rate below which the queueing system will remain

stable. We assume that the above condition is satisfied so that the Markov chain {(X,,Z,),v > 0} is

positive recurrent.

Now let

y(i,7) = LimP (X ,=i,Z =j),

v—00

i>01<j<m

T

The infinite vector y is

probability written  as  (yd .yl uJ..)  where

m .
Define  4;(w)= Y w'y(i,j) (j=12,..m) and let

§ =0

w =y, 1),y(i2),. .y(i,m).
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ol (w) = (&y{w).oslw)....0m(w)). Then it can be easily shown that

o7 (w) = yJ [wB(w)-A (w)[wl-A (w)]* (3.1)

Bw)= Y w*B(k) = Deq)F (M1-w)),

k=0
Alw) = D wt A (k) = Flu) (M1-w))

The standard procedure at this point is to determine yg by complex function theory arguments based

upon the holomorphic nature of QT(w ), but this procedure is numerically unstable. Lucantoni and Neuts
oo {11] have developed a more stable procedure to obtain yOT. We use a modified version of this procedure

which is described here for completeness.

S

{!1 Let V' be the length of a busy period initiated by a single customer at time 0. Define

r Hj = P{Z(V)=j|Z(0)=i}, i,7=12..m,

Sl ) to be the probability that the system state changes from ¢ to j during a busy period. It is known that
F the matrix I = [H;;} is the smallest solution to the following nonlinear equation:

o0
H= Y A(k)H*
k=0

= [dF g\t )exp (NH -I)t ). (3.2)
|

Equation (3.2) can be solved by a straightforward iterative method:

Ho = I
©

Hyy= de(rcd)(t )exp()‘(Hn ~I)t) (3.3)
0

In the limit as n approaches infinity, H, of equation {3.3) approaches H , the solution to (3.2). Notice

that when the matrix exponential in the above equation is computed by an eigenvalue technique, the

equation (3.3) gives H, ., in terms of F,-)? () evaluated at the eigenvalues of H, . This method is used in
e the example of next section, and it obviates the need to compute A (k) for all k. It should be noted that
R H is a stochastic matrix.
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[t 1s known that yOT is a solution to

o] =13 (T BKIH) = o D(,,d,fdf Jeap (\(H-T)(1). (3.4

The above equation determines y(;r upto a multiplicative constant, since Y, B(k JH® is a stochastic
£=0

0 R
matrix, and has rank m~1. Again, the matrix Y, B(k JH* can be computed in terms of Fi; (1)
k=0

evaluated at the eigenvalues of H .

At this point, Lucantoni and Neuts provide a rather formidable procedure to compute this multipli-

cative constant. Here we provide an alternative method, which is based upon the following equation:

Lim ¢T (w)e = 1. (3.5)
w1
Unfortunately, w/f -A (w) is singular in the limit as w —1, and hence we need to use L'Hospital’s rule to
compute the limit in (3.5). To do this, write,
wl-A (w)* = R (w)/u(w)
where R (w ) is the adjoint of w/—A (w ) and u (w ) is the determinant of w/-A (w). Then weé get

u' (1) = gd {B()+B" (1)-A" ()R ()+B(1)-A (1R (1)} (3.6)

where

A (l) == F(-red)(o)» B(l) = D(red}"; (0),

A1) = AL (e (6) ] ymo B (1) = D et A F () 4ol
Equation (3.6) above provides the required independent equation to determine the multiplicative constant.
Once yg- is known, Qr(w) is completely determined and one can compute moments by taking deriva-
tives.

One seeming difficulty of this procedure is the apparent necessity of having to compute R (w ) and
u (w) algebraically. As we only need u(1),u’ (1),R(1),R’' (1), we can use the following theorems

which eliminate the necessity of computing R (w ) and u (w ) algebraically.

Theorem 3.1. Let G(w)= [Gi;;(w)] be a m X m matrix of differentiable functions. For

k=12,..,m, define m X m matrices G(”(w) as follows:
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e Gi;j(w) ifi %k
‘i GHw)ly; =1 ifi =k
Ecij(w)

Then

-ﬁ;(dctG(w)) — S detGF)w).

=1

Theorem 8.2. Let G(w) and G'¥)(w) be as defined in Theorem 3.1. For k=1,2,...,m, define the
m X m matrices G (i (w ) as follows:

f Gij(w) ifi %k

lG(k)(w)]ij =\o if5 =k
Then

TG (G )] = ¥ [AdiG¥ - AdjG e w)]

Proofs of both these theorems are straightforward. These theorems provide O(m‘) method of computing
u' (1)and R' (1).

An interesting feature of this queueing model is that the expected service time of an arbitrary job in
steady state depends upon the load offered to the system, viz. A\. We can easily derive expressions for this
quantity when \ approaches 0 (a lightly loaded system) or as X approaches \* (a heavily loaded sys-
tem). Let S, be the service time of the V™ customer. When the arrival rate A—0, every incoming job

finds the system empty. Thus, in steady state, an incoming job finds the structure state process in state 1

with probability 8; = LimP (Z (¢t )=1). Hence ‘
t =00

Lim LimE(S,) = f:O,-E(T(r) | Z(0)=1)

A0 y—co =1

where 87 = (8,82, . . ., 8,) is a solution to

8T Q=0, 8T¢ =1,

and
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E(T(x)] 2(0) =i =‘di>"§ﬂ;(8~’)|o=°~

v When the arrival rate A—X*, the system is always busy. Hence, when a job comes up for service,

AN

the structure state process is in state i with probability, 7, where z7 = (m, . . ., 7, ) is the station-

e ———— T

. ary probability vector of the matrix .4 as defined before. Hence

3

A—=A® v—©

. . : 1
Lim LimE(S,)= Y, mE(T(z)]|Z(0)=i) = v
In the next section we tabulate LimE (S,) as a function of X for a two processor fault tolerant system.
[ mad® "]

We also study the expected queue length in such a system as a fun=tion of .

4. An Example

In this section we consider an example to demonstrate the use of the techniques presented in section
3. We obtain the mean of the number of jobs in a fault-tolerant computer system in steady state. The
system has two processor units subject to failures and repairs. The failure rate of a single processor is .
The failure of one processor causes the preemption of the job being processed. The interrupted job is res-
tart®d and processed at a reduced service rate {(service rate is assumed to be proportional to the number of
operating processors). When both processors have failed, the interrupted job is restarted as soon as one of
the processors is repaired and is processed at a reduced service rate. When the second processor is
repaired the processing of the job is continued at increased (normal) service rate. The failed processors

are repaired one at a time with a rate u.

The behavior of the system can be described by a continuous-time Markov chain with the state-
transition diagram shown in figure 1. Note that state 2 corresponds to the system with two operating pro-

cessors, and is classified as a prs state. The service rate in state 2 is ro(=2). State 1 corresponds to

'Y,
g

the system with one operating processor, and is classified as a pri state. The service rate in state 1 is

S

. ri(=1). State 3 corresponds to the system with both processors failed, and is classified as a pri state.

The service rate in state 3 is r 3(=0). Jobs arrive into the system according to a Poisson process at a rate

AR

X\. Each job has a deterministic work requirement , say = units of work.
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We now follow the procedure suggested in section 2 in order to compute

F,,(s,2),1=123; j=1,2. (Note that a job may complete only in a state with nonzero service rate).

In our example there are two types of system states, the prs subset S5 = {2}, and the pri subset

S == {1.3}. From theorem 2.3, equations (2.3) and (2.4) yield

T e 2
‘\[oo , = .
2 (o w) 8 +244+2w (4.1)
and
- 9
Moy’ (s,w) = =7 9
2 (s,w) w(s +2v+2w) (42)

Inverting with respect to w , we get

Mo, (S ,I) = e_(' +2)z /2

and

1”2-1 (s ,1-) = (s 3})‘7 ) (l—e'(""z")’/"’)

(4.4)

The LSTs F; (s ,2), i =1,3;j =1,

» can be determined from theorem 2.4, equation (2.5), as follows:

Fy (3,2) = (=£=)F}, (s ,z),

o (4.5)
Fy (s,2) = (=L—)F 5 (s 2) (4.6)
P sap 12 '
.-
::I:_, where
S
;_,' ) o +7+u)z
o Fiu(s.z)= S
:'__: .-T i1 ( ) D (8 ,1') (47)
N and
‘-‘_:'-':-. 2u ~(8429)2/2 (s +7+p)z
5 ‘ () (e e )
[P.- '.-t Fra(s,z)= 22 .
._::_. D (3 )I )
:-'_‘_:‘._ with
o
L]
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38 =24+2p) (1-e _ (e

Dis.z)= - (5 7 p)(5 +29)(5s =) ' (s +29)(s +2u)

The LST's F,-; (s,r),1=2, j=1,2, follow from theorem 2.4, equatio (2.6), as follows

Fo(s.z)=My (s,2)F (s.2),

Fon(s,2)=Ma (s,2)+ My (s,2)F5(s,2)

-

with Mg (8,2 ) and My (s,z) as given by equations (4.3) and (4.4), respectively.

ing analysis as suggested in section 3. The matrix A is given by

A

I

S Alk)
k=0

= [F;(0.z)], i,j=12
can now be evaluated using equations (4.7)(4.10). It follows that

e ~H? (1-e7#%)

A = (e-uz -e ~(71+u)z ) (1—6-‘“ +e'—(7+u)2 )
1[T§_ = 1, then

e 8% _p~{1+p)z
T (1-errHe)

1-¢7#*
(l~e“"’+“)’)'

The condition of stabilty for the present queueing system is given by 1[T13 < 1, with
Bi = 3 klai(k) + a;o(k)]

= —)\{Fi;' (0,z) + Fi;‘,' (0,z)], =12

Thus, we have, after evaluating Fi; ' (0,z), 1,7 =1,2, using equations (4.7)-(4.10),

AR S ._.‘._.._l‘~‘,} ST, v ceT

-"-P-h ln"__.}_.."_‘ cata _.1.‘7'4_- .A‘_A_.A LV, _.}4 .“‘--A PPN, A\L

-8 727):.2_6 (8 +ytulzr ) ‘}

Now that we have evaluated the LST's FUj (s.z), 1=1,23; ) =1,2, we can carry out the queue-

As noted earlier, A is an irreducible stochastic matrix. Let T be the solution to 1[T = z[TA and

. _\; ,‘._\ .
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(4.9)

(4.10)

(4.11)

(4.12)

S
“.‘"_A vy .A..A.,.J,A..B.‘a‘
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3 = X\ Q)07 (g _gmury o L (g mey, (4.13)
2(v+u) 2y
and
By = )\[(ff_‘*”_ﬁr_'*'ﬁ_') (€7 4 THulE _o-uz —l)—-‘;l—- (e~(Truls _g-uz) (4.14)
2yp(v+n) 2v
The condition of stability follows (1,3, 723, < 1),
9 - .
A< -;u(“fr’ ﬂ)u =A% (4.15)
((y+u)"+77) (€77 -1)
Now we proceed to determine the mean ol the number of jobs in the system, in steady state.
Let the irreducible stochastic matrix / (defined in section 3) be given by
& 1-6
H = 1. @ .
It is determined as the smallest solution to
o0
H = [dF(t,z)e#-1) ' (4.16)
0
with dF (t ,z) = [dF,; (¢t x)], 1,7 =12
It is easy to show that
A4 _ -at _ -at
MH-DE 1 1-6+(1-8)e 1-6+(6-1)e (417)
a | 1-8+(9-1)e ™ 1-6+(1-6)e
where @ = A\(2-6-0). Hence substituting (4.17) in (4.16), we get:
o | 0 HU-8F  (a,2)+(0-1)F 12 (az)  (1-8)+(6-1)F yy (2 )+(1-0)F 15 (a7 )
% H = 1 (120)+(1-8)F 5, (0,2 )+ (0-1)F s (002} (1-6)+(6-1)F 5; (0,2 )+(1-6)F g (a2 )
; The unknowns & and € can be determined by solving the following two nonlinear equations
N : : |
v ba = (1-0)+(1-86)F |, (o, 2 )+{0-1)F 15 (a,2), (4.18)
N
& : .
I8 ba = (1-8)+(1-0)F 5 (a,z )+(6-1)F 4y (a,z) (4.19)

.
s 4

with F,»; (e,2), 1,7 =12, from equations (4.7)-(4.10).
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Equations (4.18) and (4.19) are solved using Broyden’s method 1 which converges quickly for judi-
ciously chosen initial solution vectors. Then the vector _I[OT is solved for by using {3.4) and {3.6). Using
.’lur we then compute QT(w) from (3.1). By the method described in section 3, we are then able to com-
pute the expected number of jobs in the system in the steady state. We plot the expected number of jobs
as a function of X in figure 2 for r=0.01,p=1 for three different values of the failure rate
4=0.01,0.05,0.1. As expected, increasing the failure rate 7 implies a substantial increase in system

congestion.

In the following table, we give the expected service time in the steady state as a function of A \°
for ¥ =0.1., 4 =1 and r =0.01. In this case the threshold arrival rate A* is 180.24. The expected service

time of an arbitrary job in steady state is denoted by E(S).
* 3

A/ E(S)*10
0.99 5.55
0.90 5.60
0.80 5.68
0.70 5.77
060 5.88
0.50 5.98
0.40 6.05
0.30 6.14
0.20 6.30
0.10 6.71
0.00 199

It is seen that the expected sei = time reduces from 0.0199 to 0.0055 as X\ incereases from 0 to
0.99¢ X\  This seemingly non-intuitive result appears because as X increases, the probability that a job

will be taken up for service when both processors are down decreases.
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